
Unifying Software Reuse, © 2018 Jörg Kienzle

Unifying Software Reuse

Jörg Kienzle
Software Composition and Reuse Laboratory (SCORE)

School of Computer Science
McGill University
Montreal, Canada

Email: Joerg.Kienzle@mcgill.ca

1



Unifying Software Reuse, © 2018 Jörg Kienzle

How Did We Get Here?
• 2009: 1st Workshop on Aspect-Oriented Modelling

• Applying AOM Approaches to the Crisis Management Case Study (JK, GM, JJ)
• CMS case study, TAOSD Special Issue with papers from participants

• 2010: 2nd Workshop on Aspect-Oriented Modelling
• Worked on Integrating AOM Approaches around the CMS (JK, GM, SM)
• Comparing AOM Approaches Paper (ECMFA 2011)

• 2011: 3rd Workshop on Aspect-Oriented Modelling
• Worked on elaborating Comparison Criteria for AOM approaches (JK, GM, JJ)
• bCMS case study, Comparing Modelling Approaches workshops, Comparison Report of AOM Approaches

• 2012: 4th Workshop on Aspect-Oriented Modelling
• Worked on refining of Comparison Criteria (JK, GM, BC, MS)

• 2015: Workshop on Concern-Oriented Reuse
• Worked on comparing Units of Reuse, Interfaces
• VCU paper at ICSR

• 2017: Workshop on Language Reuse
• Worked on applying Concern-Oriented Reuse at the language level (COLD)
• Started expanding CORE meta model to include languages, Paper submitted to <Programming>, but rejected

2



Unifying Software Reuse, © 2018 Jörg Kienzle

Software Reuse Approaches
• Code-level Reuse

• Applications are built by writing code that makes use of the API provided by (Class) Libraries / Frameworks
• Unit of Reuse: Classes / Frameworks

• Component-based Software Engineering (CBSE) / Service-Oriented Architecture (SOA)
• Applications are built by putting together software components or composing services
• Unit of Reuse: Components / Services

• Software Product Lines (SPL)
• Multiple applications (from a common domain) are built by sharing common software artefacts
• Unit of Reuse: Feature + related base models

• Model-Driven Engineering (MDE)
• Applications are built by building models describing the software to be built from different points of view / levels of 

abstraction.
• Unit of Reuse: Model Transformation / Compiler

• Domain-Specific (Modelling) Languages (DSL and DSML)
• Applications are built by building models describing the software to be built using the most appropriate language(s) to 

express the problem and solution domains
• Unit of Reuse: Language (and dedicated tools) + Model Transformation / Compiler 

3



Unifying Software Reuse, © 2018 Jörg Kienzle

• Domain expert of what is to be made 
reusable

• Knows specific details of the 
encapsulated functionality / properties / 
solutions / qualities

• Does not know in what contexts and how 
exactly the reusable unit will be used 

• Application Expert
• Knows the requirements of 

what is under construction
• Usually knows very little about 

the complexity of the reusable 
unit and it’s inner workings

Designer of Unit User of Unit
Reuse Roles

4



Unifying Software Reuse, © 2018 Jörg Kienzle

• Has to be able to determine 
whether the reusable unit is 
applicable

• Has to be able to determine 
which variant is best

• Has to be able to customize the 
reusable unit to his specific 
application context

• Has to be able to use the 
reusable unit correctly

• Wants to be unaware of the 
reusable units inner workings / 
complexities

Designer of Unit User of Unit

Considerable Development Effort Low Reuse Effort

Reuse Needs

• Has to modularize / package his 
reusable unit

• Wants to maximize versatility of the 
reusable unit (offer different solutions, 
possibility for customization), without 
compromising integrity

I 
N 
T 
E 
R 
F 
A 
C 
E

5



Unifying Software Reuse, © 2018 Jörg Kienzle

Modularization Approaches
• Within a single (modelling) language

• Hierarchical Decomposition
• Composition specification / operator: containment, inheritance

• Functional Decomposition
• Composition specification / operator: calling, invoking / binding

• Component-Oriented Decomposition
• Composition specification / operator: connectors / middleware

• Aspect-Oriented (Modelling) / Feature-Oriented Decomposition / SoC
• Composition specification / operator: pointcuts, patterns / matching, weaving

• Multilevel Modelling
• Composition specification / operator: potency-based instantiation / model transformation

• Across (modelling) languages
• Hierarchical Decomposition 
• Functional Decomposition

• Composition specification / operator: service orchestration specification / middleware
• Language-Oriented / View-Oriented Decomposition / Multiparadigm or Heterogenous Modelling

• Composition operator: structural & behavioural mappings, consistency rules / model transformations, coordinated 
execution

6



Unifying Software Reuse, © 2018 Jörg Kienzle

VCU - Interfaces for Reuse
• 2015 Workshop on Reuse at Bellairs
• Survey of existing units of reuse

• Classes, Components, Frameworks, Software Product Lines, Services

• Identification of a Canonical Set of Interfaces for Reuse

• Variation Interface

• Customization Interface

• Usage Interface

[1] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle, Nicolas Belloir, Philippe 
Collet, Benoit Combemale, Julien DeAntoni, Jacques Klein, and Bernhard Rumpe: “VCU: 
The Three Dimensions of Reuse”, International Conference on Software Reuse, ICSR 2016, 
Limassol, Cyprus, June 5-7, 2016, no. 9679 in LNCS, pp. 122–137, Springer, June 2016.

7



Unifying Software Reuse, © 2018 Jörg Kienzle

Current MTheory Metamodel

8



Unifying Software Reuse, © 2018 Jörg Kienzle

Workshop Objectives
• To be discussed :)
• Understanding relationships between reuse approaches and how to 

exploit modularization techniques for reuse
• Document the understanding within a “M-Theory” Metamodel

Concrete Outcome
• To be discussed, to evolve :)
• Setup a new vision
• Setup a practical demonstration of the M-Theory

9



Unifying Software Reuse, © 2018 Jörg Kienzle

Potential Workgroups
• Terminology of each domain (MDE, DSL, CBSE, AO, Multi 

Paradigm, Multi Level, …)
• Ontology
• Metamodel

• Model Transformations: How to integrate them within the M-
Theory?

• Language for creating perspective actions from language actions
• Customization Interface: What should be customizable? Is it 

possible to specify the CI in a language-independent way?
• Mapping cardinalities / model types / posteriori typing

• Multilevel modelling: promotion from model to language
• Negative Variability: How to handle it within the M-Theory

10


